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I. INTRODUCTION

The NCO radical is thought to play an important intermediate role in
hydrocarbon flames even though it has not been previously observed in a flame
environment. In particular it is postulated that NO is an intermediate in
the conversion of fuel-bound nitrogen to NOx and N2 in rich combustion and in
production of NOx in hydrocarbon/air flames. Our interest in NCO results
from its possible importance in gun propellant flames. Experimental thermal
decomposition studies of various gun ropellants show that large quantities of
HCHO, HCN, N20, and NO2 are produced. Thus flamel composed of these fuels
and oxidizers are of interest. Shock tube studies of the HCN + NO2 system
lead to the conclusion that an important pathway for the reaction involves
NCO. For these reasons it is of interest to develop a sensitive technique for
detection of NCO, in situ, in reactive systems.

NOD is the subject of several previous and contemporary spectral
investigations. The A - X system was first identified in low esolution
emission spectra upon photolysis of C2 H5 NCO by Holland, et al. Subsequently,
rotational analys s of the absorption sgectra have been per ormed for the A-

X system by Dixon and by Bolman et al and for the B-w- Xswsystem by

1 (a) G.B. Debrow, J.M. Goodings, and D.K. Bohme, "Flame-Ion Probe of

Intermediates Leading to NO- in CH4 -O-N 2 Flames," Combustion and Flame
Vol. 39, p. 1, 1980. (b) C. MWrley, The Mechanism of NO Formation from
Nitrogen Compounds in Hydrogen Flames Studied by Laser Fluorescence,"
18th Symposium (International) on Combustion, The Combustion Institute,
Pittsburgh, PA, p.23, 1981. (c) Y.H. Song, D.W. Blair, V.J. Siminski, and
W. Rartok, ibid, "Conversion of Fixed Nitrogen to N2 in Rich Combustion,"
p. 53; and references therein.

2 (a) R.A. Beyer, "Molecular Beam Sampling Mass Spectrometry of High Heating Rate

Pyrolysis: Description of Data Acquisition System and Pyrolysis of HMX in a
Polyurethane Bind6e. ," ARBRL-MR-02816, 1978 (AD A054328). (b) C.U. Morgan and
R.A. Beyer, "ESR and IR Spectroscopic Studies of fMX and RDX Thermal
Decomposition, " 15th JANNAF Combustion Meeting, Newport, RI, September 1978.

3R.A. Fifer and H.E. Holmes, "Kinetics of the HCN + NO2 Reaction Behind Shock
Waves," to appear in J. hys. Chem..

4R. Holland, D.W.G. Style, R.N. Dixon, and D.A. Ramsay, "Emission and
. Absorption Tectra of NCO and NKS," Nature, Vol. 182, p. 336, 1958.

5R.N. Dixon, "The Absorption Spectrum of the Free NCO Radical," Phil. Trans.
Roy. Soc., Vol. 252, p. 165, 1960.

" 
6P.S.H. Bolman, J.M. Brown, A. rrington, I. Kopp, and D.A. Famsay, "A Re-

Investigation of the A2 E+ - a Band System of NCO," Proc. Roy. Soc.,
Vol. A343, p. 17, 1975.
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Dixon.' NCO A- X syshem emission, in addition to that from other species,

has been used by Okabe to study photolysis of HNCO. In addition to these

early gas phase experiments, NCO 9 has been studied in matrix isolation

experiments. Milligan and Jacox used this approach to investigate the

infrared and ultraviolet absorption spectra. Bondybey and English1 0 similarly

studied the laser excited fluorescence (LEF) spectra. More recently, in a

paper mainly concerning a different subject, Reisler et alII reported gas
phase radiative lifetimes of several vibrational levels of the A state.

* Finally, in a study not yet completed, Sullivan et a11 2 have detected LEF for

both the A and B states of NOD in a flow system. Preliminary measurements

include A and B state lifetimes, collisional quenching rates for several added

species, and ground vibrational state frequencies.

Recently, spontaneous Raman spectroscopy has been uped to probe

". temperature and species profiles in premixed laminar C14 /N20 flames.
13 During

the course of these experiments intense laser fluorescences resulting from

excitation with various prism selected lines of the probe argon ion laser were

discovered. The radical species producing these fluorescences have been

7 .N. Dixon, ,,A27 2 T Electronic Band System of the Free NCO Radical,"

Can. J. Phys., Vol. 38, p. 10, 1960.

8H. Okabe "Photodissociation of HNCO in the Vacuum Ultraviolet; Production

of NCO A tr and NH (A3 Tr, c 1T), " J. Chem. Phys., Vol. 53, p. 3507, 1970.

9D.E. Milligan and M.E. Jacox, "Matrix Isolation Study of the Infrared and
Ultraviolet Spectra of the Free Radical NCO," J. Chem. Phys., Vol. 47,
p. 5157, 1967.

1 0 V.E. Bonybey and J.H. English, "Fermi Resonance and Vibrational Relaxation
-in the A E State of NCO in Solid Argon," J. Chem. Phys., Vol. 67, p. 2868,
1977.

IIH. Reisler, M. M4angir, and C. Wittig, "The Kinetics of Frei Radicals
Generated by IR Laser Photolysis. II. Reactions of C2 (XIE ), C (a

3 Iu),

C3 (X
1 E 9 ) and CN(X 2 E+) with 02,"1 Ch~em. _Phys., Vol.- 47, p. A.9 1950.

12 (a) B.J. Sullivan, G.P. Smith, D.R. Crosley, and G. Black, "Laser-Induced
Fluorescence Studies of the NCO Molecule," Eastern States Fall Technical
Meeting of the Combustion Institute, Pittsburgh, PA, Paper 44, October 1981.
(b) B.J. Sullivan, G.P. Smith, and D.R. Crosley, to be published.

13J.A. Vanderhoff, R.A. Beyer, and A.J. Kotlar, "Laser Raman Spectroscopy of
Flames; Temperature and Concentrations in CH4/N20 Flames," ARBRL-TR-02388,
January 1982 (AD A112326).

8
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identified as C2, CN and NCO.
14 -1 7  Measuregpnts involving C2 and CN

concentrations and CN B2£ +  energy transfer" in the flame are discussed In

separate papers. This paper addresses the spectral identification and
concentration profile of NO in the flame. The present work includes a more
detailed description lf the apparatus and discussion of the results than
appeared previously. Two major issues are addressed. First, the best argon
laser line for probing NCO densities and the transition it pumps are
discussed. Then,an accurate relative density profile is presented along with
an estimate of the absolute peak NCO density for our flame conditions. The
estimate, which is thought to be good to about a factor of 5, places a lower
bound on the NCO density of - 3 x 1014 cm- 3 in our slightly rich flame.* This
density is sufficiently large that possible participation of NCO in the flame
chemistry should be considered.

II. EXPERIMENTAL

A. Burner

Rich premixed flames of methane and nitrous oxide burning at atmospheric
pressure have been studied using an open channel curved knife edge burner
shown in Figures 1 and 2. The burner was recently designed in this laboratory
for intracavity laser probing through the reaction zone of premixed
flames.18 The burner was made from two aluminum plates with various gaskets

- providing the desired channel width. For these experiments the rectangular
channel dimensions were 50 mm by 3 mm. Two small, independent channels run
along each side of the main channel and a flow of N2 through these channels
prevents the flame from wrapping around the ends of the knife edges. The
burner produces a curved flame front which follows the radius of curvature of
the knife edges (50.8 mm). In typical usage a laser beam passes between the

" knife edges parallel to the top of the burner (Figure lb). The cross section

1 4J.A. Vanderhoff, R.A. Beyer, W.R. Anderson, and A.J. Kotlar, "Ar+ Laser
Excited Fluorescence Profiles of Radicals Produced in a CH4 /N20 Flame,"
36th Symposium on Molecular Spectroscopy, Columbus, Ohio, :une 1981.

15J.A. Vanderhoff, R.A. Beyer, A.J. Kotlar, and W.R. Anderson, "Ar+ Laser
Excited Fluorescence of C2 and CN P oduced in a Flame," to appear in
Combustion and Flame.

16W.R. Anderson, A.J. Kotlar, and J.A. Vanderhoff, to be published.

17W.R. Anderson, J.A. Vanderhoff, A.J. Kotlar, L.J. Decker, and R.A. Beyer,

"Laser Excitation of NCO A - X System Fluorescence in a CH4 /N20 Flame Using
an Argon Ion Laser," Eastern States Fall Technical Meeting of the Combustion
Institute, Pittsburgh, PA, Paper 47, October 1981.

*Compare this to the overall flame molecular density of -3 x 1018 cm-3 at

I atm and the measured flame temperature, 2500 K.

18R.A. Beyer and M.A. DeWilde, "Simple Burner for Laser Probing of Flames,"

Rev. Sci. Instrum. Vol. 53, p. 103, 1982.

9



0 -0

0

%4-4

z 0

ui. L-4

0 0

c

-4 a

w zl

0 l

ww z

100



KNIFE EDGE

TYPICAL
PROBED
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Figure 2. Cross Section Across Width of Burner. A typical flame position
is shOnwx. The laser beam is circular in cross section. The rectangular area
labeled "typical probed region" was mapped out by moving the burner back and
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in Figure 2 shows a typical laser beam position. Fbr the present experiments,
only a length of about 3 mm of the laser beam was viewed by the detection
optics. Since the radius of carvature of the knife edges is much larger than
this, the results may be treated using one-dimensional flame approximations.
The curvature is used to minimize index of refraction effects on the laser
beam.

Gas flow to the burner is regulated by rotameters. The fuel oxidizer
mixture is expressed as an equivalence ratio , where 4 is defined as the
actual fuel-oxidizer concentration ratio divided by the stoichiometric fuel-
oxidizer concentration ratio (i.e.,4 [CH4 ]/[N 201). The spectroscopic results
for NCO were obtained at different times without an emphasis being placed on
the exact flame conditions. Here the approximate conditions were = 1.6 with
40% dilution by mole fraction with N 2. For the case where the concentration
and temperature profiles and the absolute density estimates were obtained the
flow conditions were carefully measured with a wet test meter. The results
were = 1.36 * 0.02 with 45% dilution with N2 . The overall premixed gas flow
rate was 1.72 * 0.05 I/min at 298 K and 1 atmosphere.

Temperature measurements performed on this burner using spontan Hus Raman
spectroscopy indicate that heat losses to the burner are very small. That
is, within experimental error (< 50K) the maximum flame temperatures measured
are the same as obtained from an equilibrium flame temperature calculation
assuming adiabatic conditions.

B. Optics and Electronics

The experimental arrangement for this study is shown In Figure 3. A
nominal 4 watt (all lines) argon Ion laser with prism line selection was used
as the excitation source. Its cavity was extended with two h4ghly reflective
mirrors of focal length I m and 0.3 m providing an intracavity beam waist of
about 100 vim. The intracavity circulating power was about 50 watts on the
strongest lines. only minor attenuation occurred when a steady CH4 /N20 flame
was inserted in the cavity at the beam waist. The burner was placed on its
side with the open channel facing the detection optics. The burner was
attached to a small milling table providing movement in two directions. For
the flame profiles measured in the present work the burner motion was along
the line of sight of the detection optics. This motion was monitored using a
precision dial gauge which reads directly to 0.01 mm.

For coarse spectral resolution (see Fig. 3) two quartz lenses were used
to image a portion of the scattered light onto the 100 Pm horizontal slits of
a 0.25 m spectrometer mounted on its side. The sampled light came from a
volume approximated by a cylinder of 100 vim diameter and 3 mm in length. An
optical multichannel analyzer (OMA) with a silicon intensified vidicon tube
was used to detect the dispersed light. Using a grating of 1180 grooves/mm
approximately 400A of the spectrum could be observed at one time with this
system. The radiation was accumulated into 500 channels which, when coupled

*with the 100 wm entrance slits of the spectrometer, provided a resolution,
FWHM, of approximately 3 A. The data was accumulated for equal lengths of
time into the two separate OMA memories first with laser on and then with

laser off conditions. The latter provided a flame background emission
spectrum. Differencing of these two memories yielded the LEF or Raman
spectrum. Accumulation times for data repoLted here were usually less than

12
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ten seconds for LEF and about thirty seconds for Raman scattering data.

Frequently, neutral density filters had to be placed in front of the entrance

slits of the monochromator to keep the real time ',EF signal within the dynamic

range of the OMA. Either LEF or Raman signals from the reaction zone of the

flame could be readily observed in real time on a display oscilloscope. our

. discovery of these unexpected fluorescences may be directly traced to this

* capability.

While the 0.25 m spectrometer - OMA detection sy stem had sufficient

resolution to allow identification of C2 and CN, 14 '15 the rotational structure
of NCO was much too dense to allow a firm assignment of the spectrum. For

this reason a higher resolution detection system was necessary. Here a 1 m
monochromator with a cooled EMI type 9789 QA photomultiplier tube (PMT) wired
for photon counting replaced the 0.25 m monochromator - OMA system in Figure

3. A chopper operating at 40 Hz was placed inside the laser cavity to provide
laser on and laser off conditions necessary for the elimination of the
background signal. A glass dove prism was placed in front of the entrance
slits to rotate the Image 900. The highest resolution achieved with this

". system was 0.17 A FWPM. Amplified pulses from the photomultiplier tube were

passed through a single channel analyzer which discriminated against noise
-* sources. The output of the single channel analyzer then passed through, in

parallel, two linear gates and two rate meters. The flame background was
removed from the LEF signal by gating the signal to the two rate meters in

.* synch with the chopper and subtracting the rate meter outputs. The response
-time of the ratemeters was such that these signals appeared continuous and

could thus be subtracted easily. The resultant LEF (difference) and flame
emission signals were recorded with a dual strip chart recorder. In addition,

the separate ratemeter outputs could he digitized and stored in a PDP 11/34

. computer for later analysis.

III. RESULTS AND DISCUSSION

A. Interpretation of Spectral Features

As mentioned in the introduction the LEF spectra of NCO were first

observed while measuring temperature and major species profiles in a flame
using spontaneous Raman spectroscopy. Some typical OMA spectra from this
early work 14 are shown in Figure 4. The upper trace is a flame emission
spectrum obtained with the laser blocke , ?ibst of the emission observed is
from the Av = -I sequence of the CN B2E + X2E + violet system (4140 - 4220 A)
or from the Av = 0 sequence of the CH A2 A + X2 system (4240-4400 A). Higher

resolution scans, shown later, indicate that a small fraction of the emission
in the CH P-branch region is due to NCO. Fluorescence spectra obtained by

subtracting this emission spectrum from the fluorescence plus emission spectra
are shown for seven discrete Ar+ laser pump lines. These individual spectra

were normalized and are thus not of similar intensity as depicted in Figure 4.

Inspection of the fluorescence spectra of Figure 4 reveals several
Interesting features. First, one of the laser lines, 4545 A, pumps CN.

Fluorescence from the R and P branches of the (1,2) band in the B - X system
i results In the two sharp peaks between 4160 and 4200 A. Studies described in

detail elsewhere1 5 showed that the 4545 A line pumps a (1,3) R 20 transition

of CN. Second, apart from the CN band, all of the fluorescence spectra

14



consist of a system of bands in an envelope extending from about 4160 -

4440 A. Similar appearing band envelopes are also obtained when pumping with
the 4965 and 5145 A lines (not shown). These spectra look similar to the NCO
emission spectra observed by Okabe8 upon photolyzing HNCO. It was fol this
reason that we originally, tentatively, assigned the spectra to NCO.

1

The fluorescence spectrum from the 4658 A pump line was initially

" selected for detailed examination using the I m monochromator for two

-" reasons. First, the shape of the envelope for the banded system is quite
different and appears narrower than that from the other pump lines. (See Figure
4.) Second, the integrated fluorescence intensity (unnormalized for laser
power) is the strongest for the 4658 A pump line in spite of the fact that
this is one of the weakest laser lines. This intense fluorescence may be
understood by examining earlier fluorescence and absorption work on NCO.
Bondybey and Englishl0 observed fluorescence of matrix isolated NCO by pumping
to the A E+ (0,00,0) state. The resulting fluorescence to the X2'r (1,01,0)
state occurs between 21,300 - 21,600 cm-1 , a range encompassing the 4658 A
laser excitation line. Additional confirmation that the 4658 A laser line
pumps to the A2_Z+ (0,00,0) vibrational state comes from lxperimental
absorption results combined with determinations of the X nr (1 ,8 0) energy.
Absorption studies5'6 of gas phase NCO show that the A2E+ (0,0 ,0) + X
(0,01,0) transition lies in the frequency region 22,700 - 22,900 cm -
Combining this result with the average of three measurements of the X 2I
(1,01,0) energy level,10,12 127' cm- 1 , Indicatis that the 4658 A line falls

(1,0 ~ ~ 2E (0) enrylvl , 0)ict~
in the right region for A21+ (0,0 ,0) + Xw' (1,0 ,0) excitation of NCO. None
of the other laser lines overlap such a low-lying vibrational band so well,
explaining the stronger fluorescence observed upon pumping with the 4658 A
line.

A scan of the fluorescence from the 4658 A pump line using the 1 m
monochromator at 0.60 A FWHM resolution is shown in Figure 5. The top trace
is flame emission resulting primarily from the CH A - X (0,0) P-branch. The
lower trace is the LEF spectrum. The spectra are of similar intensity, as
shown, demonstrating the necessity for subtracting the flame emission. Seven
bandheads from two vibrational bands greviously observed in absorption
experiments on the NCO A + X system I may be readily identified in the
fluorescence spectrum. Thus the previous tentative assignment to NCO is
confirmed. In addition, 8 prominent lines are observed at regularly spaced
intervals of about 4.5 A in the spectrum. Two of these lines are only
resolved from the bandheads in scans at the highest resolution available (0.17A
FWHM). They are slightly to the violet of the P1 and P bandheads in Fig.
5. This pattern of lines is an indication that the number density in a
rotational state of A2E+ (0,00,0) having quantum number N' = 30 or 31 is much
larger than for any other rotational state. It is common in a flame
environment for a rotational level directly pumped by an excitation source in
an electronically excited molecule to retain a higher population than nearby

15
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Figure 4. Flame Emission and LEF Spectra from a Slightly Rich GH4/N20 Flame

Where the Resolution was 3A FWHM The spectra have been normalized so that no

information about relative intensities of LEF from the various argon pump lines

may be obtained from the figure. The top trace is the flame emission. The

other seven traces are LEF spectra resulting from the argon laser pump lilies
indicated to the right.

K 16

.'. .



EMISSION

CH A -X SYSTEM
15 10

Ildc P2 dc I I I I I I 1 I I 1

Plcd+P2cd 1 1 I I I I I 1 10

4410 4400 4390 4380 4370 4360

NCO FLUORESCENCE 4668 A PUMP
(0,00 0)2 :+ --- 0,01,0)2 7r

OP12  P2+PQ12  P1  Q1 +QP 2 1

I I I I BANDHEADS

OP1233 P232 Q231 R230 P132 Q131 R130 SR2129
SI t I I I PROMINENT LINES

(0,11,0) 2 7r.--(0,1 ,0) 2A

BANDHEADS
P2 P1  Q1

I I I I I I

4410 4400 4390 4380, 4370 4360
WAVELENGTH (A)

Figure 5. Flame Emission and LEF Spectrum of NCO Using the 4658 A Laser Line.

The spectra were taken at a resolution of 0.60 A FWHM. Top trace: Flame

emission arising mainly from the CH A + X system. Some weaker bandheads of

NCO are also visible. Bottom trace: LEF spectrum of NCO in the Av = 0 region.
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levels. This is demonstrated by fluorescence scans on O,19,20 CH,21 CN16 ,2 1

and by indirect evidence from an excitation scan on NH for which the detector
was biased towards fluorescence from only a few rotational levels.2 2  This

phenomenon demonstrates that rotational energy transfer in the excited state
is not sufficiently fast to redistribute molefgle 1e a Boltzmann distributiou1
before they are quenched to the ground state. I  ,

Evidence that N' = 31 is the level pumped by the 4658 A excitation line
is gi in in Figures 6 and 7. Under serendipitous conditions argon discharge
lines at 4401.02 A and 4400.09 A appeared in the spectrum. A section from
one spectrum at 0.17 A FWHM resolution in which these lines appeared is shown
in Figure 6. These Ar lines are very close to the prominent Q2 line and were
used to calibrate* the prominent line position as 4398.41 A. The position
measured by Dixon5 for Q231 was 4398.36 A. (Measured line positions and
assignments of Reference 5 and 6 for this band are in excellent agreement.)
Separation between adjacent Q2 lines in this region is about 0.21 A, so that
the precision of the calibration is sufficient to rule out other
assignments. Thus, the prominent Q2 line is established as Q2

3 1.

19C. Chan and J.W. Daily, "Laser Excitation Dynamics of OH in Flames," Applied

Opt., Vol. 19, p. 1357, 1980.

G.p. Smith and D.R. Crosley, "Quantitative Laser-Induced Fluorescence in

OH: Tansition Probabilities and the Influence of &ergy Tansfer,"
18th Symposim (International) on Combustion, The Combustion Institute,
Pittsburgh, PA, p. 1511, 1981.

2 1A.C. Eckbreth, P.A. Bonczyk, and J.F. Verdieck, "Investigation of CARS and

Laser-Induced Fluorescence for Practical Combustion Diagnosis," Report No.
EPA - 600/7-80-091, May 1980. Example spectra abstracted from this report
may be found in: A.C. Eckbreth, "Spatially Precise Laser Diagnostics for
Practical Combustor Probing, " Laser Probes for Combustion Chemistry, edited
by D.R. Crosley, American Chemical .ociety Synposimn brTes 134, washington,
D.C., p. 271, 1980; J.F. Verdieck and P.A. Bonczyk, "Laser-Induced Saturated
Fluorescence Investigations of CH, CN and NO in Fames," 18th Syrposium
(International) on Combustion, The Combustion Institute, Pittsburgh, PA,
p. 1559, 1981.

2 2W.R. Anderson, L.J. Decker, and A..]. Kotlar, "Concentration Profiles of NH

and OH in a Stoichiometric CH4/N20 Flame by Laser Excited Fluorescence and
Absorption, " to appear in Combustion and Flame.

2 3Atomic line positions were obtained from G.R. !Hrrison, Massachusetts
Institute of Technology Wavelength Tables, M.I.T. Press, Cambridge, MA,1 M.

*It was discovered that the monochromator scan was not quite linear over long
wavelength regions. The spectra in Figures 5, 7, and 8 were scanned from
longer to shorter wavelengths. Tbwcrds the shorter wavelengths, the scans
are only good to within about ±0.5A. Yherefore, high resolution scans were
calibrated using known line positions of argon and CH emission. 7he
calibration lines were chosen so that only short wavelength scans were
required.
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As a crosscheck on the identification of the prominent Q2 branch line a
scan at 0.17 A FWHM resolution was made in the region of the prominent 0 1 and
R1 line positions. These positions were checked against nearby known CH line
positions (see Figures 5 and 7) obtained from the work of Moore and
Broida.2  If the assignment of N' = 31 as the pumiped level is correct, the
prominent Q, and R, branch lines would be Q 131 and R1 30. The CH "cdl8 and

Pdcl 8 + Pcdl 9 were used to calibrate the position of the Q, line as 4383.89A
while the CH Pcdl 6 and Pdc6 were used to calibrate the position of the R,
line* as 4379.21 A. The positions measured by Dixon for Q 31 and R1 30 were

4383.91 and 4379.22 A , respectively. Separations between aaJacent Q1 and R1
lines near N' = 31 are about 0.10 and 0.40 A, respectively. Thus, the Ql line
position is most consistent with an assignment of Q1 31. However, the
calibration is not precise enough to rule out Q1 30 or Q 132 as the lines are so
dense near the bandhead. This is not the case f-- the R 1 line as it is not
near a bandhead. The separations between R I liihj are large enough to allow
firm identification of the prominent line as R1 30. Therefore, all of the
prominent lines of Figure 5 must arise from N' = 31. Those lines not
identified by direct calibration were labeled on the basis that N' = 31 is the
level pumned by the laser. A full high resolution scan (0.17 A FWHIM) of the
A2k + (0,0 ,) 1 X2 (0,0 1 ,0) fluorescence using the 4658 A laser pump line is

*. shown in Figure 8. The series of small, regularly spaced peaks about the
prominent Q2 line is due to the Q2 branch progression.** The similar Q

* branch progression is not well resolved because the Q, lines are more closely
*' spaced.9,6

Efforts were made to identify the rotational branch pumped by the 4658 A
* laser line and, hence, the (N", J") level from which pumping occurs. For this

purpose, spectra were taken at 0.60 A resolution in the region of the laser
excitation line. An example is shown in Figure 9. The strong peak at 4658 A
is due to scattered laser light. The peak drops to zero at line center
because of saturation of the detection electronics. Three pairs of peaks
positioned symmetrically about the pump line are grating ghosts and should be
disregarded. The remainder of the spectrum is complicated by LEF from the C2
Swan system. Here the 4658 A line excites in the (2,1) band. Because the
C2 emission is much stronger than the NCO emission in this region we were able
to compare the emission and fluorescence spectra ascribing peaks which occur
in both to C2 . Grating ghosts were also eliminated from consideration. The

.* remaining peaks (except for the laser line) are designated with arrows in

-t Figure 9.

9_4C.. Moore and H.P. Broida, "CH in the Solar Spectrum," J. Res. Nat. Fur.

Sand., Vol. 63A, p. 19, 1959.

4 *In the text, F-nwmber subscripts for CH transitions are dropped for

convenience since spin-orbit con onents were overlapped even at our

highest available resolution.

**At first glance the reproducibly larger size of the Q2 32 corared to Q 230 in

* Figur.' 8 ouggests preferential rotational up-transfer, which seems
unreasonable. The large size of Q 232 is probably due to overlap with the
f 8,9i. AP laser line , idth i8 much too narrow to pump N' 31 and 32

* siPmuZ tanousiY.
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A

The following observations may help interpret the spectrum of Figure 9.
Emission in the 4400 A region results from the A2E+ (0,00,0) + X2w (0,01,0)
vibrational band. The A2Z + (0,00,0) + X2r (1,01,0) band has the same overall
symmeries of ground and excited states. Though no rotational analysis for
the X, (1,01,0) state is available, one would expect its rotational constants

2to be nearly the same as those for the X 7r (0,0 ,0) state. Therefore, the
rotational branch structure of these two vibrational bands should be quite
similar. In particular, though minor differences might well occur, the
relative spacings and intensities of the bandheads and prominent lines from
N' = 31 should be about the same for the two vibrational bands. Thus if
spectra for both bands are available on the same wavelength scale, an overlay
of the two spectra should reveal similarities. (Note, of course, that the
pumped transition will lie directly under the laser line.) We have overlaid
transparencies of the spectra and compared them as described. This comparison
leads to the best agreement when one assumes the Q2 branch line is pumped.
However, the assignment is not firm due to the C2 and grating ghost
interferences in Figure 9.

Because of the expected similarities in rotational structure for the two
vibrational bands of interest in the preceding parairaph, 8ne can ompute1
approximate positions of rotational lines in the A (0,0 ,0) + X w (1,0 ,0)
band by subtracting the energy of X2r (1,01,0), 1264 cm- ,from the energy for

- the corresponding rotational line in the A2E+ (0,0 ,0) + X2iT (0,01,0) band.
This has been done for all possible lines having N'=31. The result is shown
in Table 1. The A2 E (0 ,0 ) + x2' (0,01,0) line positions were obtained
from the absorption spectra.5' 6  The 4657.94 A laser line 2 3 corresponds to an
energy of 21463 cm- l. This clearly matches the estimated Q231 position best,
in agreement with the overlay result. The slight discrepancy is not
unreasonable considering the assumption of equal rotational constants for the
two vibrational levels. However, the assignment of transition type as Q2 2is
still not entirely conclusive. The error limits on measurements of the X 72
(1,01,0) energy are large enough that assignment of the pumping transition to
the P232 or R230 cannot be ruled out. Though assignment to other than the Q2
branch seems unlikely, a firm identification awaits further study.

The prominent lines in the spectrum in Figure 5 also yield information
about energy transfer in the excited NCO. As shown, the Q 31 and Q231
intensities are nearly equal. Since one would expect nearly equal rotational
line strengths for these transitions, these intensities indicate approximately
equal densities in the F1 and F2 spin components for N' = 31, in contrast to2E+ 2 20
observations made for the A E state of OH in a flame. These equal
populations may arise either by excitation to one spin state followed by rapid
spin state redistribution with retention of N' identity, or by equal pumping
of two spin states via overlap of main and satellite branch transitions. A
calculation of the excited state spin-splitting using the spin-rotation
constant of Ref. 6 yields F31 - F231 = 0.016 + 0.005 cm- I . Since the
Doppler width at the measured flame temperature of 2500 K is about 0.13 cm
the main branch and satellite transitions are almost completely overlapped
under these conditions. If pumping occurs via the ?2 branch and its

" satellite, both having similar transition strength,' then the two spin states
will be equally populated by laser excitation. The other two possibilities
for the pumping transition, however, favor collisional spin-state

* relaxation. Of these, the R branch has no satellite and only one spin state
• " can be pumped directly. As discussed earlier, it is most probable pumping
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TABLE 1. ESTIMATES OF NCO A + X SYSTEM LINE POSITIONS
IN 4658 A REGIONa

Transition Type Known Position in Estimated Position in
(0,00,0) + (0,01,0) (Cm- 1) (0,00,0) + (1,01,0) (cm- 1 )

0 P1233 22679 21405

P2+P Q12 32 22705 21431

QQR2122729 21455

R230 22753 21479

P 132 22779 21505

QI+QP 2 1 3 1  22804 21530

RI+RQ2 130 22829 21555

SR2 1 29 22852 21578

Known line positions were obtained from Ref. 5 and 6. Estimated line
positions were obtained by subtracting the measured Xi (1, 0) vibrational
energy from the Qnown positions as described in the text. The argon 4658 pA
laser line corresponds to an energy of 21463 cm- 1.

2

25



occurs in the Q branch where the strength of the main branch and satellite
transitions differ by a factor of about 3. Therefore, the interpretation of
spin-state relaxation is favored.

In scans of fluorescence from A2 E+ (0,O 0 ,y)~ besides the bands in the
4400 A and 4658 A region, Bondybey and English also observed weaker
emis8ions near 4485 A and 4820 A. These were attibuted to emission to X2E +

(0,1 ,0) and X2T (0,01,1), respectively. Obrrections for detection system
sensitivity vs wavelength were not made in their study nor in the present
work, but the wavelength range scanned is small enough that the sensitivity is
not expected to change drastically. (In particular, sensitivities for the
PMT's used in the two studies change less than 15% over the region of
interest.) In the earlier study I0 an unknown gain change was made between
4400 and 4485 A. We have measured the intensity ratio for emission to X

* (0,01,0) and X2E + (0,10,0). (bmbining this with the earlier ratios for the
three hot band intensities leads to an estimate of the intensity ratio between
the two strongest bands. The resulting intensity ratio for X2n (0,00,0) to X271
(1,01,0) is about 2.8 : 1.* Emission to X27r (0,01,I) could not be found using
the I m monochromator. This may be due to two factors. First, the emission
may be too broad to be seen easily at high resolution. Second, the laser
power and performance were deteriorating in the late part of this study when
the most diligent attempts to find the band were made. However, a very weak
and rather broad doublet was observed with the 25 cm monochromator - OMA
system which could be attributed to this band. Though C2 fluorescence
interferes with exact measurements in the 4658 A region, the intensity ratios
for the three hot bands are at least in qualitative agreement with Ref. 10.

One fluorescence spectrum from those with broad spectral envelopes shown
in Figure 4 was selected for further study. The fluorescence intensity from
the 4765 A pump line was the strongest, about 0.2 times that from the 4658 A
line. A spectrum at 0.60 A FWHM resolution taken with the 1 m monochromator

S.is shown in Figure 10. The spectrum is noiser than for that from 4658 A
(Figure 5) due to the lower signal intensity. Nonetheless, the same seven
bandheads as seen with the 4658 A laser line may still be readily
identified. in addition, several other bandheads and/or peaks at shorter
wavelengths are present in Figure 10. jtis readily seen from Ref. 10 that
these emissions do not arise from the A2Z+ (0,0 ,0 ) level. They may arise
from excitation to some high vibrational level followed by vibrational
relaxation populating a number of lower levels. Alternatively, the laser line
could excite high-lying rotational levels from several vibrational levels in
the ground state. Thus, the excitation line could populate more than one
vibrational level in the A state resulting in a rather complex spectrum. Or,
some combination of these two effects may take place. If significant

"*" vibrational relaxation does occur, it would seem to indicate that H20, CO2 , 1"2

in a private communicatior, V.E. Bondybey informed us that though exact
information was lost, the approximate gain change should lead to an
intensity ratio of about 2 or 3:1, in good agreement with our result.
Approximate intensity ratios for the other two bands may be derived from the
fluorescence scan in Ref. 10. 7he results are also in reasonable agreement
with preliminary results of a more careful determination to appear in
Ref. 12b.
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or Co (major species present under rich flame conditions) must be the
collision partnIr since Sullivan et a112 have found that vibrational
relaxation of A E NCO by N2 and 02 is very slow. The doublet observed at
about 4371 A in Figure 10 is rather intriguing. The sharpness of these peaks,
similar in width to the prominent lines of Figure 5, suggests that perhaps one
or both of them are due to emission from an initially pumped N' level. Higher

resolution scans would be necessary to evaluate this possibility. We have not
pursued this type of study at present.

B. NCO Density in the Flame

The NCO fluorescence may be readily used to map out relative densities in
the flame. This was done using the 4658 A excitation line since this

excitation is the best understood. Also, the line excites the A2E+ (0,00,0)
level so that vibrational transfer to lower levels will not complicate data
analysis. The technique is explained in this section.

Two basic assumptions must be made in order to make relative density
measurements. First, one must assume the relative quenching rate is nearly
constant throughout all positions of interest in the flame. At first glance,
this assumption seems unreasonable for the flame front because the composition
and temperature undergo drastic changes in that region. However, several
recent studies ini t 6 quenching rates are nearly constant in flame fronts,
at least for OH. 21 ' t'Y As will be seen shortly, the temperature is fairly
constant over much of the region of interest. Also, one typically finds for
premixed flames that the major species composition approximates that in the

burnt gases very early in the flame front. Therefore the assumption of
constant quenching rates is not unreasonable. The second basic assumption is
that the X state of NCO is in thermal equilibrium at the flame temperature.
One then calculates the relative density using the familiar fbltzmann
equation. These assumptions lead to the very simple proportionality

n - FQ/(2J" + 1) exp (-EN..,j../kT) (1)

where n is the density of NCO, F the fluorescence intensity, Q the molecular

partition function, J- is the angular momentun quantum number for the ground

state and EN.. .. is the energy of the ground rotational state. Fbr the

present results we assuned the 4658 A line pumps the Q 2
3 1 transition for which

the ground state is N" = 31, J" = 30.5. However, even if the assignment of
rotational branch for the pumping transition is incorrect, the factors in Eq.
(1) still lead to the same relative density profiles. However, the estimate
of absolute density, to appear later, would be affected. If the R or P
transition is actually punped at 4658 A, our estimate of the rotational line

strength is about a factor of 2 too high so that the calculated density would

2 5J.H. Bechtel and R.E. Teets, "Hydroyl and Its Concentration Profile in

" " Methane-Air Flames," Applied Opt., Vol. 18, p. 4138, 1979.

2 6M.,1. Cottereau and D. Stepowski, "Laser-Induced Fluorescence Spectroscopy

Applied to the lydroxyl Fadical in Flames," Laser Probes for Combustion
Chemistry, edited by D.R. Crosley, American Chemical Society Symposiun
Sories 134, Washington, DC, p. 131, 1980.
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be a corresponding factor too low. EN.. j.. in Eq. (1) was estimated by using
the measured 9 ,10 ,'2 X w (I,01,0) energy'of 1274 cm- and assuming rotational
constants are nearly equal in the X2ff (0,01,0) and (1,01,0) states. The spin-
orbit splitting5 ,6 of ~ 98 cm-1 in X4 was also considered.

The relative fluorescence intensity profiles were measured using the
25 cm monochromator - OMA system. The strong fluorescence for the entire band

"" system between 4300 A and 4425 A was integrated to yield the intensities vs
burner position. Temperature measurements were made using the spontaneous
Raman signal from the Stokes rotational-vibrational Q-branch of N2. These
Raman spectra were fitted using a multiparameter least squares computer
program developed to extract temperature and N2 concentration from the data.
The standard deviation in flame temperatures is about 1%. The Raman methods
are discussed in more detail in Ref. 13. The resulting temperature and
relative density profiles are shown in Figure 11. The adiabatic flame
temperature, calculaed using the NASA-Lewis thermodynamic equilibrium code of
Svehla and McBride,2  is also indicated in the figure. Note that the measured
peak temperature and adiabatic flame temperature are equal within experimental
error, indicating minimal heat losses to the burner. The zero point on the
relative position scale in Figure 11 corresponds to the top of the burner body.
(See Figure 1.) The minimum distance between the top of the knife edges and
the top of the burner body, where the measurements were taken, is 2.50 *
0.25 mm. The steep concentration and temperature gradients at about 1.0 -
1.5 mm indicate the position of the leading edge of the flame reaction zone.
Therefore, the reaction zone must extend about 1.0 - 1.5 mm below the top of
the knife edges under our flow conditions. (This agrees reasonably well with
a visual inspection of the luminous flame zone position.)

Besides the NO) and temperature profiles, relative a31 C and X4 CN
profiles measured at the same time 15 are shown for comparison in Figure 11.
The density profiles are almost indistinguishable from the relative
fluorescence intensity profiles (not shown), indicating the correction in Eq.
(1) is small. It should be noted that the relative concentration profiles are
only meaningful for individual compounds vs position; that is, the absolute
peak concentrations of the three compounds are not accurately known. Figure
11 shows that the C2, CN and NOD concentrations all decay rapidly outside the
reaction zone of the flame.

As discussed in Ref. 15, a very rough estimate of the absolute peak
densities in Figure 11 may be made using three major assumptions. Briefly,
one assumes: (1) The laser line is Doppler broadened at about room
temperature.* (2) The molecular transition is Doppler broadened at the flame
temperature of about 2500 K. (3) The quenching rate of excited molecular

"7 R.A. Svehla and B.J. &Bride, "Fortran IV Computer Program for Calculation

of Thermodynamic and Transport Properties of Complex Chemical Systems," NASA
TN D-7056, 1973 (1981 program version).

Actuallythe laser lineshape probably consists of about 20-30 cavity modes
!within the 0.04 cnm-  Doppler width.
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species is about I X 109 sec -1 , a typical value for atmospheric pressure
flames.28  Furthermore, measurements of NCO quenching rate4 by Oj and N2 ,12
corrected to our temperature and pressure, Indicate 1 X 10 sec- is a
reasonable estimate to select. The calculation also requires some knowledge
of the overlap of the laser pump line and the molecular transition. Data was
available to estimate this quantity for C and CN, but of course not for NCO
since exact line positions are unknown. Therefore, the calculation for NCO
assumed perfect overlap. Thus, only a lower limit for the density was
computed. Finally, the fluorescence intensity was calibrated against the
Raman N signal from room air using the same laser lines as for fluorescence
excitation. Calibration in this manner has two advantages in that it obviates
the need for an absolute laser power or a sampling volume measurement. Using
the estimated overlap for and I leads to peak densities of 2 x 1013 cm- 3

and 3 x 101 cm-  , respectively. Spectroscopic data used for these
estimates is discussed in Ref. 15. For NCO, the further necessary spectral
data is the relative intensity of vibrational bands associated with A2E

+

(0,000) and the radiative lifetime of this state. These may then be used to
calculate Einstein coefficents. The estimated relative vibrational band
intensities were obtained as discussed in the previous section. The
fluorescence lifetime used was 400 nsec obtained from gas phase
measurements. I '1 2, The lower limit for NOD density thus calculated is 3 x
1014 cm 3 . Due to the various assumptions made in the absolute density
calculations, it is difficult to place error limits on these quantities. The
major source of random error in the calculated densities is in the spectral
overlap because the densities are quite sensitive to these quantities. Of
course, the lower limit for NCO does not depend on this quantity at all. Most
probably the largest source of systematic error is in the assumed quenching
rate of I x 109 sec-' which is probably only good to within about a factor of
five. The densities are Sherefore believed to be good to within factors of
about 10 for CN, 20 for a iu C, and 5 for the lower limit for NCO. These
estimates should be useful in determining whether chemistry of these trace
species must be considered in CH4 /N20 flame models.

Attempts were made to find C2 , CN and NCO in a slightly rich CH /air
flame (exact composition unknown). The sensitivity limits were for densities
about a factor of 100 lower than in the CH4 /N20 flame. Fluorescence was found
for C2, but not for CN or NCO. This result indicates a probable difference in
the nitrogen chemistry for the two flames. Earlier studies of OH and, in
particular, NH concentrations in the stoichiometric flames led to the same
conclusion.2 2  This should not be extremely surprising because the N - N bond
strength in N2 is much stronger than in N2 0 making N more chemically inert.
We have not attempted to analyze details of the chemistry at present.

IV. CONCLUSIONS

Laser excited fluorescence from the A - X system of NCO has been
identified in a rich atmospheric pressure CH4 /N20 flame using an argon laser
pump source. LEF was obtained for all nine available laser lines ranging from
4545 A to 5145 A. The hot flame source of NCO aids in the pumping scheme

28 ,,

A similar assumption is made in D.R. Ctosley, "Collisional ffects on Laser-
Induced Fluorescence Ftam, Measurements," Opt. Eng., Vol. 20, p. 511, 1981.
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since all of the available laser lines must pump vibrational hot bards of the
NO to the red of the main 4400 A band. The 4658 A laser line appears to be
by far the most use ul of the avail ble lines for diagnostic purposes. This
line pumps in the A E+ (0, 0 u,0) + X i (1,01,0) band. It appears that this is
why the LEF is most intense for this pump line. NCO is pumped to the N' - 31
excited level by the 4658 A line. However, the rotational branch of the
pumping transition could not be firmly established. At present, the Q2

31
appears to be the most likely candidate.

The 4658 A pump line was used to measure accurate relative density
profiles in the CH4/N20 flame. In addition, a lower limit for the absolute
number density of 4 3 x 1014 cm -  was estimated using the available
spectroscopic data and an assumed quenching rate. The argon laser source has
proven to be quite useful for flame measurements of NCO. It should thus be
useful for other hot sources of NCO in which cw measurements are desired.
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